Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Curr Biol ; 34(3): 670-681.e7, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38244543

RESUMO

Streptophytes are best known as the clade containing the teeming diversity of embryophytes (land plants).1,2,3,4 Next to embryophytes are however a range of freshwater and terrestrial algae that bear important information on the emergence of key traits of land plants. Among these, the Klebsormidiophyceae stand out. Thriving in diverse environments-from mundane (ubiquitous occurrence on tree barks and rocks) to extreme (from the Atacama Desert to the Antarctic)-Klebsormidiophyceae can exhibit filamentous body plans and display remarkable resilience as colonizers of terrestrial habitats.5,6 Currently, the lack of a robust phylogenetic framework for the Klebsormidiophyceae hampers our understanding of the evolutionary history of these key traits. Here, we conducted a phylogenomic analysis utilizing advanced models that can counteract systematic biases. We sequenced 24 new transcriptomes of Klebsormidiophyceae and combined them with 14 previously published genomic and transcriptomic datasets. Using an analysis built on 845 loci and sophisticated mixture models, we establish a phylogenomic framework, dividing the six distinct genera of Klebsormidiophyceae in a novel three-order system, with a deep divergence more than 830 million years ago. Our reconstructions of ancestral states suggest (1) an evolutionary history of multiple transitions between terrestrial-aquatic habitats, with stem Klebsormidiales having conquered land earlier than embryophytes, and (2) that the body plan of the last common ancestor of Klebsormidiophyceae was multicellular, with a high probability that it was filamentous whereas the sarcinoids and unicells in Klebsormidiophyceae are likely derived states. We provide evidence that the first multicellular streptophytes likely lived about a billion years ago.


Assuntos
Embriófitas , Estreptófitas , Filogenia , Evolução Biológica , Plantas/genética , Embriófitas/genética
2.
Curr Biol ; 33(24): 5515-5525.e4, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38039969

RESUMO

The algal ancestors of land plants underwent a transition from a unicellular to a multicellular body plan.1 This transition likely took place early in streptophyte evolution, sometime after the divergence of the Chlorokybophyceae/Mesostigmatophyceae lineage, but before the divergence of the Klebsormidiophyceae lineage.2 How this transition was brought about is unknown; however, it was likely facilitated by the evolution of novel mechanisms to spatially regulate morphogenesis. In land plants, RHO of plant (ROP) signaling plays a conserved role in regulating polarized cell growth and cell division orientation to orchestrate morphogenesis.3,4,5,6,7,8 ROP constitutes a plant-specific subfamily of the RHO GTPases, which are more widely conserved throughout eukaryotes.9,10 Although the RHO family originated in early eukaryotes,11,12 how and when the ROP subfamily originated had remained elusive. Here, we demonstrate that ROP signaling was established early in the streptophyte lineage, sometime after the divergence of the Chlorokybophyceae/Mesostigmatophyceae lineage, but before the divergence of the Klebsormidiophyceae lineage. This period corresponds to when the unicellular-to-multicellular transition likely took place in the streptophytes. In addition to being critical for the complex morphogenesis of extant land plants, we speculate that ROP signaling contributed to morphological evolution in early streptophytes.


Assuntos
Clorófitas , Embriófitas , Estreptófitas , Filogenia , Plantas , Embriófitas/genética , Estreptófitas/fisiologia
3.
Physiol Plant ; 175(6): e14056, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148198

RESUMO

Water scarcity can be considered a major stressor on land, with desiccation being its most extreme form. Land plants have found two different solutions to this challenge: avoidance and tolerance. The closest algal relatives to land plants, the Zygnematophyceae, use the latter, and how this is realized is of great interest for our understanding of the conquest of land. Here, we worked with two representatives of the Zygnematophyceae, Zygnema circumcarinatum SAG 698-1b and Mesotaenium endlicherianum SAG 12.97, who differ in habitats and drought resilience. We challenged both algal species with severe desiccation in a laboratory setup until photosynthesis ceased, followed by a recovery period. We assessed their morphological, photophysiological, and transcriptomic responses. Our data pinpoint global differential gene expression patterns that speak of conserved responses, from calcium-mediated signaling to the adjustment of plastid biology, cell envelopes, and amino acid pathways, between Zygnematophyceae and land plants despite their strong ecophysiological divergence. The main difference between the two species appears to rest in a readjustment of the photobiology of Zygnema, while Mesotaenium experiences stress beyond a tipping point.


Assuntos
Embriófitas , Estreptófitas , Dessecação , Estreptófitas/genética , Estreptófitas/metabolismo , Plantas , Fotossíntese
4.
Physiol Plant ; 175(6): e14073, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148218

RESUMO

Terrestrialization by photosynthetic eukaryotes took place in the two branches of green microalgae: Chlorophyta and Charophyta. Within the latter, the paraphyletic streptophytic algae divide into two clades. These are named Klebsormidiophyceae-Chlorokybophyceae-Mesostigmatophyceae (KCM), which is the oldest, and Zygnematophyceae-Coleochaetophyceae-Charophyceae (ZCC), which contains the closest relatives of vascular plants. Terrestrialization required the emergence of adaptations in response to new challenges, such as irradiance, temperature oscillations and water deprivation. In this study, we evaluated lipid composition in species representative of distinct phylogenetic clusters within Charophyta and Chlorophyta. We aim to study whether the inherent thylakoid lipid composition, as well as its adaptability in response to desiccation, were fundamental factors for the evolutionary history of terrestrial plants. The results showed that the lipid composition was similar to that found in flowering land plants, differing only in betaine lipids. Likewise, the largest constitutive pool of oligogalactolipids (OGL) was found only in the fully desiccation-tolerant species Klebsormidium nitens. After desiccation, the content of polar lipids decreased in all species. Conversely, the content of OGL increased, particularly trigalactosyldiacylglycerol and tetragalactosyldiacylglycerol in the ZCC clade. The analysis of the molecular species composition of the newly formed OGL may suggest a different biosynthetic route for the KCM and ZCC clades. We speculate that the appearance of a new OGL synthesis pathway, which eventually arose during the streptophyte evolutionary process, endowed algae with a much more dynamic regulation of thylakoid composition in response to stress, which ultimately contributed to the colonization of terrestrial habitats.


Assuntos
Carofíceas , Clorófitas , Estreptófitas , Filogenia , Dessecação , Plantas , Estreptófitas/genética , Carofíceas/fisiologia , Clorófitas/metabolismo , Lipídeos
5.
Sci Rep ; 13(1): 9635, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322074

RESUMO

The phytohormone auxin affects numerous processes in land plants. The central auxin signaling machinery, called the nuclear auxin pathway, is mediated by its pivotal receptor named TRANSPORT INHIBITOR RESPONSE 1/AUXIN SIGNALING F-BOX (TIR1/AFB). The nuclear auxin pathway is widely conserved in land plants, but auxin also accumulates in various algae. Although auxin affects the growth of several algae, the components that mediate auxin signaling have not been identified. We previously reported that exogenous auxin suppresses cell proliferation in the Klebsormidium nitens that is a member of streptophyte algae, a paraphyletic group sharing the common ancestor with land plants. Although K. nitens lacks TIR1/AFB, auxin affects the expression of numerous genes. Thus, elucidation of the mechanism of auxin-inducible gene expression in K. nitens would provide important insights into the evolution of auxin signaling. Here, we show that some motifs are enriched in the promoter sequences of auxin-inducible genes in K. nitens. We also found that the transcription factor KnRAV activates several auxin-inducible genes and directly binds the promoter of KnLBD1, a representative auxin-inducible gene. We propose that KnRAV has the potential to regulate auxin-responsive gene expression in K. nitens.


Assuntos
Proteínas de Arabidopsis , Proteínas F-Box , Estreptófitas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Plantas/metabolismo , Reguladores de Crescimento de Plantas , Ácidos Indolacéticos/metabolismo , Estreptófitas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas F-Box/genética , Proteínas de Arabidopsis/genética
6.
Microb Ecol ; 86(1): 282-296, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35608637

RESUMO

Heavily pigmented glacier ice algae Ancylonema nordenskiöldii and Ancylonema alaskanum (Zygnematophyceae, Streptophyta) reduce the bare ice albedo of the Greenland Ice Sheet, amplifying melt from the largest cryospheric contributor to eustatic sea-level rise. Little information is available about glacier ice algae interactions with other microbial communities within the surface ice environment, including fungi, which may be important for sustaining algal bloom development. To address this substantial knowledge gap and investigate the nature of algal-fungal interactions, an ex situ co-cultivation experiment with two species of fungi, recently isolated from the surface of the Greenland Ice Sheet (here proposed new species Penicillium anthracinoglaciei Perini, Frisvad and Zalar, Mycobank (MB 835602), and Articulospora sp.), and the mixed microbial community dominated by glacier ice algae was performed. The utilization of the dark pigment purpurogallin carboxylic acid-6-O-ß-D-glucopyranoside (C18H18O12) by the two fungi was also evaluated in a separate experiment. P. anthracinoglaciei was capable of utilizing and converting the pigment to purpurogallin carboxylic acid, possibly using the sugar moiety as a nutrient source. Furthermore, after 3 weeks of incubation in the presence of P. anthracinoglaciei, a significantly slower decline in the maximum quantum efficiency (Fv/Fm, inverse proxy of algal stress) in glacier ice algae, compared to other treatments, was evident, suggesting a positive relationship between these species. Articulospora sp. did uptake the glycosylated purpurogallin, but did not seem to be involved in its conversion to aglycone derivative. At the end of the incubation experiments and, in conjunction with increased algal mortality, we detected a substantially increasing presence of the zoosporic fungi Chytridiomycota suggesting an important role for them as decomposers or parasites of glacier ice algae.


Assuntos
Camada de Gelo , Estreptófitas , Camada de Gelo/microbiologia , Groenlândia , Benzocicloeptenos , Fungos
7.
Microb Ecol ; 86(2): 763-776, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36053304

RESUMO

Filamentous green algae of the genus Zygnema are an essential part of hydro-terrestrial ecosystems. Despite several studies on their resistance to natural stresses, little is known about the composition of their assemblages and the changes they undergo over time. Two sites at altitudes above 2200 m a.s.l. in the Austrian Alps were selected for a 2-year observation period and sampled five times. Molecular phylogenetic analysis of the 152 isolated strains of Zygnema sp. was performed based on the rbcL and trnG sequences. Seven genotypes were found at these sites during the samplings, but their proportion varied throughout the seasons. The site with a more stable water regime also had a more stable representation of genotypes, in contrast to the site with fluctuating water availability. The mats formed resistant pre-akinetes at the end of the season with reduced photosynthetic activity. Contrary to expectations, the mats were not exposed to extremely cold temperatures in winter due to snow cover. Some genotypes have been previously observed at this site, indicating that the population composition is stable. This work highlights the importance of resistant pre-akinetes in surviving winter conditions, the ability of algae to re-establish mats, and the need to address the hidden diversity of the genus Zygnema.


Assuntos
Ecossistema , Estreptófitas , Estações do Ano , Filogenia , Áustria , Água
8.
Sci Rep ; 12(1): 18988, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348043

RESUMO

Microalgae have recently emerged as a key research topic, especially as biological models. Among them, the green alga Klebsormidium nitens, thanks to its particular adaptation to environmental stresses, represents an interesting photosynthetic eukaryote for studying the transition stages leading to the colonization of terrestrial life. The tolerance to different stresses is manifested by changes in gene expression, which can be monitored by quantifying the amounts of transcripts by RT-qPCR. The identification of optimal reference genes for experiment normalization was therefore necessary. In this study, using four statistical algorithms followed by the RankAggreg package, we determined the best reference gene pairs suitable for normalizing RT-qPCR data in K. nitens in response to three abiotic stresses: high salinity, PEG-induced dehydration and heat shock. Based on these reference genes, we were able to identify marker genes in response to the three abiotic stresses in K. nitens.


Assuntos
Regulação da Expressão Gênica de Plantas , Estreptófitas , Estresse Fisiológico/genética , Estreptófitas/genética , Genes de Plantas , Salinidade , Reação em Cadeia da Polimerase em Tempo Real , Padrões de Referência , Perfilação da Expressão Gênica
9.
Curr Biol ; 32(20): 4473-4482.e7, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36055238

RESUMO

The evolution of streptophytes had a profound impact on life on Earth. They brought forth those photosynthetic eukaryotes that today dominate the macroscopic flora: the land plants (Embryophyta).1 There is convincing evidence that the unicellular/filamentous Zygnematophyceae-and not the morphologically more elaborate Coleochaetophyceae or Charophyceae-are the closest algal relatives of land plants.2-6 Despite the species richness (>4,000), wide distribution, and key evolutionary position of the zygnematophytes, their internal phylogeny remains largely unresolved.7,8 There are also putative zygnematophytes with interesting body plan modifications (e.g., filamentous growth) whose phylogenetic affiliations remain unknown. Here, we studied a filamentous green alga (strain MZCH580) from an Austrian peat bog with central or parietal chloroplasts that lack discernible pyrenoids. It represents Mougeotiopsis calospora PALLA, an enigmatic alga that was described more than 120 years ago9 but never subjected to molecular analyses. We generated transcriptomic data of M. calospora strain MZCH580 and conducted comprehensive phylogenomic analyses (326 nuclear loci) for 46 taxonomically diverse zygnematophytes. Strain MZCH580 falls in a deep-branching zygnematophycean clade together with some unicellular species and thus represents a formerly unknown zygnematophycean lineage with filamentous growth. Our well-supported phylogenomic tree lets us propose a new five-order system for the Zygnematophyceae and provides evidence for at least five independent origins of true filamentous growth in the closest algal relatives of land plants. This phylogeny provides a robust and comprehensive framework for performing comparative analyses and inferring the evolution of cellular traits and body plans in the closest relatives of land plants.


Assuntos
Carofíceas , Embriófitas , Estreptófitas , Filogenia , Evolução Biológica , Embriófitas/genética , Carofíceas/genética , Plantas , Solo
10.
Plant Physiol ; 190(3): 1588-1608, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35993883

RESUMO

Charophytes (Streptophyta) represent a diverse assemblage of extant green algae that are the sister lineage to land plants. About 500-600+ million years ago, a charophyte progenitor successfully colonized land and subsequently gave rise to land plants. Charophytes have diverse but relatively simple body plans that make them highly attractive organisms for many areas of biological research. At the cellular level, many charophytes have been used for deciphering cytoskeletal networks and their dynamics, membrane trafficking, extracellular matrix secretion, and cell division mechanisms. Some charophytes live in challenging habitats and have become excellent models for elucidating the cellular and molecular effects of various abiotic stressors on plant cells. Recent sequencing of several charophyte genomes has also opened doors for the dissection of biosynthetic and signaling pathways. While we are only in an infancy stage of elucidating the cell biology of charophytes, the future application of novel analytical methodologies in charophyte studies that include a broader survey of inclusive taxa will enhance our understanding of plant evolution and cell dynamics.


Assuntos
Carofíceas , Clorófitas , Estreptófitas , Filogenia , Plantas/genética , Evolução Biológica
11.
Protoplasma ; 259(5): 1157-1174, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34939169

RESUMO

The streptophyte algal class Zygnematophyceae is the closest algal sister lineage to land plants. In nature, Zygnematophyceae can grow in both terrestrial and freshwater habitats and how they do this is an important unanswered question. Here, we studied what happens to the zygnematophyceaen alga Mougeotia sp., which usually occurs in permanent and temporary freshwater bodies, when it is shifted to liquid growth conditions after growth on a solid substrate. Using global differential gene expression profiling, we identified changes in the core metabolism of the organism interlinked with photosynthesis; the latter went hand in hand with measurable impact on the photophysiology as assessed via pulse amplitude modulation (PAM) fluorometry. Our data reveal a pronounced change in the overall physiology of the alga after submergence and pinpoint candidate genes that play a role. These results provide insight into the importance of photophysiological readjustment when filamentous Zygnematophyceae transition between terrestrial and aquatic habitats.


Assuntos
Mougeotia , Estreptófitas , Expressão Gênica , Mougeotia/genética , Fotossíntese/genética , Filogenia , Plantas/metabolismo , Estreptófitas/fisiologia
12.
BMC Plant Biol ; 21(1): 322, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34225654

RESUMO

BACKGROUND: Flexibility of plant metabolism is supported by redox regulation of enzymes via posttranslational modification of cysteine residues, especially in plastids. Here, the redox states of cysteine residues are partly coupled to the thioredoxin system and partly to the glutathione pool for reduction. Moreover, several plastid enzymes involved in reactive oxygen species (ROS) scavenging and damage repair draw electrons from glutathione. In addition, cysteine residues can be post-translationally modified by forming a mixed disulfide with glutathione (S-glutathionylation), which protects thiol groups from further oxidation and can influence protein activity. However, the evolution of the plastid glutathione-dependent redox network in land plants and the conservation of cysteine residues undergoing S-glutathionylation is largely unclear. RESULTS: We analysed the genomes of nine representative model species from streptophyte algae to angiosperms and found that the antioxidant enzymes and redox proteins belonging to the plastid glutathione-dependent redox network are largely conserved, except for lambda- and the closely related iota-glutathione S-transferases. Focussing on glutathione-dependent redox modifications, we screened the literature for target thiols of S-glutathionylation, and found that 151 plastid proteins have been identified as glutathionylation targets, while the exact cysteine residue is only known for 17% (26 proteins), with one or multiple sites per protein, resulting in 37 known S-glutathionylation sites for plastids. However, 38% (14) of the known sites were completely conserved in model species from green algae to flowering plants, with 22% (8) on non-catalytic cysteines. Variable conservation of the remaining sites indicates independent gains and losses of cysteines at the same position during land plant evolution. CONCLUSIONS: We conclude that the glutathione-dependent redox network in plastids is highly conserved in streptophytes with some variability in scavenging and damage repair enzymes. Our analysis of cysteine conservation suggests that S-glutathionylation in plastids plays an important and yet under-investigated role in redox regulation and stress response.


Assuntos
Glutationa/metabolismo , Plastídeos/metabolismo , Embriófitas/metabolismo , Evolução Molecular , Oxirredução , Filogenia , Estreptófitas/metabolismo
13.
Plant J ; 107(4): 975-1002, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34165823

RESUMO

Land plants constantly respond to fluctuations in their environment. Part of their response is the production of a diverse repertoire of specialized metabolites. One of the foremost sources for metabolites relevant to environmental responses is the phenylpropanoid pathway, which was long thought to be a land-plant-specific adaptation shaped by selective forces in the terrestrial habitat. Recent data have, however, revealed that streptophyte algae, the algal relatives of land plants, have candidates for the genetic toolkit for phenylpropanoid biosynthesis and produce phenylpropanoid-derived metabolites. Using phylogenetic and sequence analyses, we here show that the enzyme families that orchestrate pivotal steps in phenylpropanoid biosynthesis have independently undergone pronounced radiations and divergence in multiple lineages of major groups of land plants; sister to many of these radiated gene families are streptophyte algal candidates for these enzymes. These radiations suggest a high evolutionary versatility in the enzyme families involved in the phenylpropanoid-derived metabolism across embryophytes. We suggest that this versatility likely translates into functional divergence, and may explain the key to one of the defining traits of embryophytes: a rich specialized metabolism.


Assuntos
Enzimas/metabolismo , Fenilpropionatos/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Enzimas/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Família Multigênica , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Proteínas de Plantas/genética , Metabolismo Secundário , Estreptófitas/genética , Estreptófitas/metabolismo
14.
J Phycol ; 57(4): 1151-1166, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33529378

RESUMO

Commercial cultivation of eukaryotic microalgae has so far employed a unicellular form of species only (e.g., Chlorella pyrenoidosa, Dunaliella salina, and Haematococcus pluvialis). In this study, we assessed the feasibility of using the filamentous eukaryotic microalga Klebsormidium sp. LGX80 as a new cultivar for biomass and lipid production. The effects of different forms and concentrations of nitrogen on growth and lipid production of Klebsormidium sp. LGX80 were studied by using a glass column (ø4.5 × 60 cm) photobioreactor under laboratory conditions. Growth and lipid production of the new strain were further evaluated in an outdoor pilot-scale tubular photobioreactor. The results showed that when supplied with urea as a source of nitrogen Klebsormidium sp. LGX80 yielded a final biomass concentration of 8.49 ± 0.10 g · L-1 in which a cellular lipid content was 59.2 ± 0.4% DW. Under such conditions, the biomass and lipid productivities were 471.7 ± 5.9 and 248.1 ± 0.0 mg · L-1  · d-1 , respectively. Fatty acid analysis revealed that the main fatty acids of Klebsormidium sp. LGX80 were palmitic acid (C16:0), linoleic acid (C18:2ω6), and linolenic acid (C18:3ω3), of which linoleic acid (C18:2ω6) accounted for up to 67.5 ± 0.1% of total fatty acids. When grown outdoors in a 13,000-L tubular photobioreactor with an initial nitrogen concentration of 3 mM urea, Klebsormidium sp. LGX80 reached the highest biomass concentration of 2.63 ± 0.09 g · L-1 with the cells containing 38.0 ± 0.5% lipids (% DW), resulting in the volumetric biomass and lipid productivities of 147.2 ± 3.6 and 37.9 ± 0.9 mg · L-1  d-1 , respectively. The results of light:dark cycle experiment showed that a durative and prolonged light irradiation hindered the biosynthesis of chlorophyll a and chlorophyll b in the cells, but promoted the carotenoid accumulation. These results suggested that Klebsormidium sp. LGX80 can be a potential oleaginous filamentous microalga for commercial production of microalgal oils.


Assuntos
Chlorella , Microalgas , Estreptófitas , Biomassa , Clorofila A , Ácidos Graxos , Lipídeos
15.
Plant Cell Physiol ; 62(3): 436-446, 2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-33416834

RESUMO

Land plants evolved from a single group of streptophyte algae. One of the key factors needed for adaptation to a land environment is the modification in the peripheral antenna systems of photosystems (PSs). Here, the PSs of Mesostigma viride, one of the earliest-branching streptophyte algae, were analyzed to gain insight into their evolution. Isoform sequencing and phylogenetic analyses of light-harvesting complexes (LHCs) revealed that M. viride possesses three algae-specific LHCs, including algae-type LHCA2, LHCA9 and LHCP, while the streptophyte-specific LHCB6 was not identified. These data suggest that the acquisition of LHCB6 and the loss of algae-type LHCs occurred after the M. viride lineage branched off from other streptophytes. Clear-native (CN)-polyacrylamide gel electrophoresis (PAGE) resolved the photosynthetic complexes, including the PSI-PSII megacomplex, PSII-LHCII, two PSI-LHCI-LHCIIs, PSI-LHCI and the LHCII trimer. Results indicated that the higher-molecular weight PSI-LHCI-LHCII likely had more LHCII than the lower-molecular weight one, a unique feature of M. viride PSs. CN-PAGE coupled with mass spectrometry strongly suggested that the LHCP was bound to PSII-LHCII, while the algae-type LHCA2 and LHCA9 were bound to PSI-LHCI, both of which are different from those in land plants. Results of the present study strongly suggest that M. viride PSs possess unique features that were inherited from a common ancestor of streptophyte and chlorophyte algae.


Assuntos
Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Estreptófitas/metabolismo , Centrifugação com Gradiente de Concentração , Eletroforese em Gel de Poliacrilamida , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/isolamento & purificação , Espectrometria de Massas , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/isolamento & purificação , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Filogenia , Análise de Sequência de DNA , Estreptófitas/genética
16.
Nucleus ; 11(1): 330-346, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33161800

RESUMO

The functional organization of the plant nuclear envelope is gaining increasing attention through new connections made between nuclear envelope-associated proteins and important plant biological processes. Animal nuclear envelope proteins play roles in nuclear morphology, nuclear anchoring and movement, chromatin tethering and mechanical signaling. However, how these roles translate to functionality in a broader biological context is often not well understood. A surprising number of plant nuclear envelope-associated proteins are plant-unique, suggesting that separate functionalities evolved after the split of Opisthokonta and Streptophyta. Significant progress has now been made in discovering broader biological roles of plant nuclear envelope proteins, increasing the number of known plant nuclear envelope proteins, and connecting known proteins to chromatin organization, gene expression, and the regulation of nuclear calcium. The interaction of viruses with the plant nuclear envelope is another emerging theme. Here, we survey the recent developments in this still relatively new, yet rapidly advancing field.


Assuntos
Proteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Proteínas de Plantas/metabolismo , Estreptófitas/metabolismo , Proteínas de Membrana/genética , Membrana Nuclear/genética , Proteínas de Plantas/genética , Estreptófitas/genética
17.
Protist ; 171(5): 125768, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33126022

RESUMO

Microbial parasites have only recently been included in planktonic food web studies, but their functional role in conveying dietary energy still remains to be elucidated. Parasitic fungi (chytrids) infecting phytoplankton may constitute an alternative trophic link and promote organic matter transfer through the production of dissemination zoospores. Particularly, during proliferation of inedible or toxic algal species, such as large Cyanobacteria fostered by global warming, parasites can constitute an alternative trophic link providing essential dietary nutrients that support somatic growth and reproduction of consumers. Using phytoplankton-parasites associations grown under laboratory controlled conditions we assessed the fatty acids and biochemical composition of species with different nutritional quality and followed the metabolic pathway from the algal host and their parasites zoospores using compound-specific stable isotope analysis. This study demonstrated that chytrids are trophic upgraders able to retain essential nutrients that can be transferred to upper trophic levels both in terms of organic matter quantity and nutritional quality. Through the production of zoospores, nutritionally important long-chain polyunsaturated fatty acids that can be consequently assimilated by consumers. We conclude that parasitism at the base of aquatic food webs may represent a crucial trophic link for dietary nutrients and essential biomolecules alternative to herbivory or bacterivory, which can be particularly crucial during the proliferation of inedible or nutritionally inadequate algal species fostered by climate change.


Assuntos
Cadeia Alimentar , Plâncton/metabolismo , Quitridiomicetos/química , Quitridiomicetos/metabolismo , Diatomáceas/química , Diatomáceas/metabolismo , Ácidos Graxos/análise , Plâncton/parasitologia , Estreptófitas/química , Estreptófitas/metabolismo
18.
Pharm Res ; 37(8): 152, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32700034

RESUMO

PURPOSE: Anthocyanins (ACNs) are polyphenols that might reduce pathological processes associated with type 2 diabetes mellitus and other chronic diseases, but their bioavailability is still controversial. In this study, the metabolic activity of oral delivery of ACN-loaded niosomes was investigated and evaluated in a diet-induced obesity (DIO) mice model. METHODS: ACNs extracted from Vaccinium Meridionale by the supercritical fluid extraction method were loaded in niosomes. The niosomal formulation was physically characterized and further administrated in drinking water to obese, insulin resistant mouse. We evaluated the effect of ACN loaded niosomes on hyperglycemia, glucose and insulin intolerance and insulin blood levels in C57BL/6 J mice fed with a high-fat diet. RESULTS: The ACN-loaded particles were moderately monodisperse, showed a negative surface charge and 57% encapsulation efficiency. The ACN-loaded niosomes ameliorated the insulin resistance and glucose intolerance in the DIO mice model. Additionally, they reduced animal weight and plasma insulin, glucose, leptin and total cholesterol levels in obese mice. CONCLUSION: ACN-loaded niosomes administration, as a functional drink, had a beneficial effect on the reversal of metabolic abnormalities associated with obesity.


Assuntos
Antocianinas/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/química , Lipossomos/química , Nanocápsulas/química , Extratos Vegetais/química , Estreptófitas/química , Animais , Antocianinas/administração & dosagem , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Colesterol/sangue , Colesterol/metabolismo , Diabetes Mellitus Experimental , Dieta Hiperlipídica , Composição de Medicamentos , Liberação Controlada de Fármacos , Humanos , Hipoglicemiantes/administração & dosagem , Insulina/sangue , Insulina/metabolismo , Insulina/farmacologia , Resistência à Insulina , Leptina/sangue , Leptina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/tratamento farmacológico , Extratos Vegetais/administração & dosagem
20.
J Exp Bot ; 71(11): 3279-3286, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32270175

RESUMO

Land plants with elaborated three-dimensional (3D) body plans have evolved from streptophyte algae. The streptophyte algae are known to exhibit varying degrees of morphological complexity, ranging from single-celled flagellates to branched macrophytic forms exhibiting tissue-like organization. In this review, I discuss mechanisms by which, during evolution, filamentous algae may have gained 2D and eventually 3D body plans. There are, in principle, two mechanisms by which an additional dimension may be added to an existing algal filament or cell layer: first, by tip growth-mediated branching. An example of this mechanism is the emergence and polar expansion of root hairs from land plants. The second possibility is the rotation of the cell division plane. In this case, the plane of the forthcoming cell division is rotated within the parental cell wall. This type of mechanism corresponds to the formative cell division seen in meristems of land plants. This literature review shows that of the extant streptophyte algae, the Charophyceae and Coleochaetophyceae are capable of performing both mechanisms, while the Zygnematophyceae (the actual sister to land plants) show tip growth-based branching only. I finally discuss how apical cells with two or three cutting faces, as found in mosses, may have evolved from algal ancestors.


Assuntos
Embriófitas , Estreptófitas , Evolução Biológica , Filogenia , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...